Learning Probabilistic Models for Recognizing Faces under Pose Variations

نویسندگان

  • M. Saquib
  • Olaf Hellwich
چکیده

Recognizing a face from a novel view point poses major challenges for automatic face recognition. Recent methods address this problem by trying to model the subject specific appearance change across pose. For this, however, almost all of the existing methods require a perfect alignment between a gallery and a probe image. In this paper we present a pose invariant face recognition method centered on modeling joint appearance of gallery and probe images across pose in a probabilistic framework. We propose novel extensions in this direction by introducing to use a more robust feature description as opposed to pixel-based appearances. Using such features we put forward to synthesize the non-frontal views to frontal. Furthermore, using local kernel density estimation, instead of commonly used normal density assumption, is suggested to derive the prior models. Our method does not require any strict alignment between gallery and probe images which makes it particularly attractive as compared to the existing state of the art methods. Improved recognition across a wide range of poses has been achieved using these extensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning a Warped Subspace Model of Faces with Images of Unknown Pose and Illumination

In this paper we tackle the problem of learning the appearances of a person’s face from images with both unknown pose and illumination. The unknown, simultaneous change in pose and illumination makes it difficult to learn 3D face models from data without manual labeling and tracking of features. In comparison, image-based models do not require geometric knowledge of faces but only the statistic...

متن کامل

Title of Dissertation : UNCONSTRAINED FACE RECOGNITION

Title of Dissertation: UNCONSTRAINED FACE RECOGNITION Shaohua Zhou, Doctor of Philosophy, 2004 Dissertation directed by: Professor Rama Chellappa Department of Electrical and Computer Engineering Although face recognition has been actively studied over the past decade, the state-of-the-art recognition systems yield satisfactory performance only under controlled scenarios and recognition accurac...

متن کامل

Fusion Classifier for Open-Set Face Recognition with Pose Variations

A fusion classifier composed of two modules, one made by a hidden Markov model (HMM) and the other by a support vector machine (SVM), is proposed to recognize faces with pose variations in open-set recognition settings. The HMM module captures the evolution of facial features across a subject’s face using the subject’s facial images only, without referencing to the faces of others. Because of t...

متن کامل

Robust Face Recognition Using Probabilistic Facial Trait Code

Recently, Facial Trait Code (FTC) was proposed for solving face recognition, and was reported with promising recognition rates. However, several simplifications in the FTC encoding make it unable to handle the most rigorous face recognition scenario in which only one facial image per individual is available for enrollment in the gallery set and the probe set includes faces under variations caus...

متن کامل

Face Recognition under Varying

This thesis considers the problem of recognizing human faces despite variations in illumination, pose and contiguous occlusion, using only frontal training images. In particular, we are interested in simultaneously handling multiple modes of variability in automatic face recognition. We first propose a very simple algorithm, called Nearest-Subspace Patch Matching, which combines a local transla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015